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 • The escalating urbanization and industrial activities in cities have 

significantly impacted air quality, posing health risks and environmental 

challenges that demand innovative solutions. This review systematically 

explores the integration of artificial intelligence (AI) and Internet of 

Things (IoT) sensors within smart cities, focusing on their role in real-

time air quality monitoring and dynamic response mechanisms. By 

adhering to PRISMA guidelines, we analyze recent advancements in AI-

driven automated control systems, which utilize IoT sensors to 

continuously monitor pollutants, including nitrogen dioxide (NO₂), sulfur 

dioxide (SO₂), carbon monoxide (CO), and particulate matter (PM). The 

data gathered by these sensors feed into AI algorithms that facilitate 

immediate, adaptive responses, such as modifying traffic light sequences 

to alleviate congestion and notifying nearby facilities to adjust emissions 

during high pollution periods. This review synthesizes findings on the 

effectiveness, limitations, and scalability of these systems, highlighting key 

challenges like sensor data accuracy, privacy considerations, and the 

infrastructure required for city-wide deployment. The paper concludes by 

emphasizing the transformative potential of AI and IoT in fostering 

sustainable urban environments and presents recommendations for 

future research and policy improvements to optimize smart city air quality 

management. 
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1 INTRODUCTION 

Urbanization and industrial growth have dramatically 

transformed modern cities, enhancing economic activity 

but also significantly degrading air quality and public 

health (Camarasan et al., 2023). This shift has led to an 

urgent need for solutions that can address air pollution 

in real-time, especially as pollutants like nitrogen 

dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide 

(CO), and particulate matter (PM) accumulate at 
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alarming rates (Rollo et al., 2023). While traditional air 

quality monitoring systems relied on stationary stations 

and periodic data collection, they often lack the 

responsiveness required for the dynamic and dense 

urban environments of today (Mabrouk et al., 2017). 

Consequently, cities are exploring more sophisticated 

approaches, with artificial intelligence (AI) and the 

Internet of Things (IoT) emerging as pivotal 

technologies for continuous, automated monitoring 

(Byeon et al., 2015). The fusion of these technologies 

marks a significant evolution in air quality management, 

moving from reactive to proactive responses in 

combating urban pollution. The integration of AI in air 

quality monitoring has expanded capabilities beyond 

mere detection, allowing for real-time analytics and 

adaptive responses that were previously unattainable 

(Swaminathan et al., 2022). For instance, AI-driven 

algorithms can now interpret data from IoT sensors 

spread throughout urban areas, enabling instantaneous 

adjustments to pollution sources, such as modifying 

traffic light patterns or alerting industries to temporarily 

reduce emissions during high pollution periods 

(Shafique et al., 2022). These advancements contrast 

with earlier methods that could not respond to 

fluctuating pollution levels or predictively manage air 

quality in a complex urban landscape (Zhao et al., 2018). 

AI’s analytical capabilities are particularly suited for 

handling the large volumes of data generated by IoT 

sensors, which are deployed across multiple locations to 

capture diverse environmental variables (Połednik, 

2022). The ability to analyze and act on this data in real-

time represents a significant evolution in urban air 

quality management. Moreover, the deployment of IoT 

sensors in smart cities further enhances the efficiency of 

AI-driven monitoring systems by providing the 

necessary infrastructure for granular data collection and 

automated responses (Wen et al., 2020). IoT-enabled 

devices, such as low-cost, portable sensors, collect 

pollutant data across various parts of a city, offering 

comprehensive insight into pollution patterns and trends 

(Mendil et al., 2022). These devices communicate 

wirelessly with centralized databases, where AI models 

analyze the incoming data, identifying hotspots and 

correlating them with potential pollution sources in real-

time (Goyal & Khare, 2010). Early models of such 

systems lacked these advancements, often relying on 

sporadic or delayed data, but modern IoT networks have 

revolutionized the precision and immediacy of urban 

pollution management (Sundar Ganesh et al., 2023). As 

a result, cities equipped with these systems are better 

positioned to implement timely interventions, 

minimizing the adverse effects of air pollution on 

residents’ health. 

Despite the progress, significant challenges remain in 

ensuring the reliability and accuracy of sensor data, 

which can be affected by environmental factors and 

sensor degradation (Wani et al., 2023). Studies indicate 

that sensor calibration and maintenance are critical for 

 

Figure 1: Air Quality Monitoring Solution Architecture  

(Source: ES-france.com) 
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achieving consistent performance, as inconsistencies 

can lead to erroneous AI predictions and ineffective 

interventions (Aggarwal et al., 2019). Privacy concerns 

also arise with the widespread deployment of IoT 

sensors in public spaces, as data collection could 

infringe on individual privacy if not carefully managed 

(Singh & Singh, 2022). Addressing these challenges 

requires collaborative efforts from policymakers, 

technology developers, and urban planners to establish 

standards and best practices for deploying these systems 

effectively. The lessons learned from early deployments 

underscore the need for robust regulatory frameworks 

that can support these emerging technologies while 

safeguarding public trust and data security. The 

transformative potential of AI-driven automated control 

systems in urban environments has spurred a wave of 

research and development, with studies demonstrating 

both the current achievements and areas for 

improvement in this field (Kaginalkar et al., 2021). 

Recent advancements focus on scaling these 

technologies for city-wide implementation, making 

real-time air quality monitoring feasible even in large 

metropolitan areas. Moreover, researchers are actively 

exploring innovative machine learning models that can 

enhance prediction accuracy, as well as adaptive 

response systems that respond effectively under varying 

pollution conditions (Fan et al., 2019). As the 

technology matures, the role of AI in fostering 

sustainable urban environments continues to expand, 

with each breakthrough laying the groundwork for 

smarter, cleaner cities. The primary objective of this 

study is to systematically review and synthesize the 

existing literature on AI-driven automated control 

systems for real-time air quality monitoring within the 

context of smart cities, particularly through the lens of 

PRISMA guidelines. This review aims to evaluate the 

effectiveness, scalability, and limitations of AI and IoT-

integrated systems that monitor and respond to urban air 

quality changes. The focus lies in understanding how AI 

algorithms, fueled by data from IoT sensors, enable 

proactive interventions, such as altering traffic flow or 

notifying industries to reduce emissions, thereby 

minimizing pollution in densely populated urban areas. 

By investigating key factors like sensor data accuracy, 

infrastructure requirements, and privacy concerns, this 

study seeks to provide comprehensive insights into the 

strengths and challenges associated with these systems. 

Additionally, it aims to identify potential gaps in current 

research and offer recommendations for future 

advancements and policy considerations that would 

enhance the efficiency of air quality management in 

smart cities.

2 LITERATURE REVIEW 

The rapid urbanization and industrial growth in cities 

have led to increasing air pollution levels, necessitating 

innovative solutions for real-time monitoring and 

management. Traditional methods for tracking air 

quality have often been limited in responsiveness and 

scope, particularly in the complex and dynamic 

environments of urban areas. However, recent 

advancements in artificial intelligence (AI) and the 

Internet of Things (IoT) have catalyzed a shift towards 

more efficient, adaptive systems that are capable of 

providing real-time insights and automated responses to 

air quality fluctuations. This literature review examines 

the evolution of AI-driven automated control systems 

for air quality management, with a focus on key 

technological advancements, implementation 

 

Figure 2: Evolution of Urban Air Quality Management 

 

https://nonhumanjournal.com/index.php/JMLDEDS


 
Copyright © The Author(s) 

JOURNAL OF MACHINE LEARNING, DATA ENGINEERING AND DATA SCIENCE 

Doi: 10.70008/jmldeds.v1i01.51 

 

JMLDEDS Page 150 

challenges, and outcomes in smart cities. The review is 

structured to explore various components of these 

systems, drawing on recent studies to highlight how AI 

and IoT integration has transformed air quality 

monitoring and response mechanisms in urban settings. 

2.1 Evolution of Air Quality Monitoring Systems 

Air quality monitoring has evolved significantly over 

the past decades, primarily in response to the increasing 

need for precise, real-time data in densely populated 

urban environments (Ryu, 2022). Traditional 

monitoring techniques relied heavily on stationary 

sensors installed in select locations, which provided data 

at limited intervals (Silva et al., 2018). These systems, 

though effective for basic environmental assessments, 

struggled to capture the dynamic variations in air 

pollution levels caused by fluctuating urban activities 

and environmental factors (Yurtsever & Yurtsever, 

2018). The limitations of stationary systems, including 

delayed response times and high maintenance costs, 

underscored the necessity for more flexible and 

responsive solutions (Chen et al., 2023). The shift from 

static to dynamic monitoring systems marked a turning 

point in air quality management, facilitated by 

advancements in mobile sensing and data transmission 

technologies (Camarasan et al., 2023). Dynamic 

systems incorporated mobile and portable sensors that 

could be deployed across various urban areas, enabling 

continuous, granular monitoring of pollutants. The 

integration of mobile sensors into monitoring networks 

allowed cities to gather more extensive data on pollutant 

distribution, thus improving the understanding of 

pollution hotspots and aiding in strategic intervention 

planning (Rollo et al., 2023). Unlike earlier approaches, 

dynamic systems provided the flexibility to capture real-

time data across larger geographic areas, allowing for 

better analysis of the spatial and temporal patterns of 

urban pollution (Mabrouk et al., 2017). 

The emergence of artificial intelligence (AI) and the 

Internet of Things (IoT) has introduced a new era of 

real-time, automated air quality monitoring that is well-

suited for complex urban environments (Byeon et al., 

2015; Istiak et al., 2023; Saika et al., 2024; Sohel et al., 

2024; Uddin et al., 2024). AI has been instrumental in 

enhancing data processing capabilities, enabling the 

analysis of large datasets generated by IoT sensors and 

providing predictive insights for proactive pollution 

management (Alam et al., 2024; Badhon et al., 2023; 

Islam et al., 2024; Istiak & Hwang, 2024; Swaminathan 

et al., 2022). IoT devices, particularly low-cost sensors, 

have made it feasible to deploy extensive sensor 

networks across cities, capturing data on pollutants such 

as nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and 

particulate matter (PM) with high precision and 

regularity (Shafique et al., 2022). This development has 

allowed urban areas to implement more targeted and 

responsive pollution control measures, reducing the lag 

between data collection and decision-making (Zhao et 

al., 2018). AI-driven systems enhance the ability to 

forecast pollution trends and identify patterns by 

employing sophisticated algorithms, such as machine 

learning models, that can detect anomalies and predict 

high pollution events (Połednik, 2022). Unlike 

traditional monitoring approaches, AI algorithms 

analyze data streams in real time, offering immediate 

feedback that can support adaptive responses to 

pollution levels (Wen et al., 2020). For example, cities 

can implement AI algorithms that adjust traffic flow or 

issue alerts during high pollution periods, thus directly 

mitigating pollution sources and preventing potential 

Figure 3: Evolution of Air Quality Monitoring 

Systems 
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health risks (Mendil et al., 2022). The integration of AI 

for real-time processing exemplifies how technology 

can bridge the gap between air quality data collection 

and actionable insights, transforming the scope of urban 

environmental management (Ashrafuzzaman, 2024; 

Goyal & Khare, 2010; Rahman et al., 2024; Rozony et 

al., 2024). 

The deployment of IoT-enabled sensor networks has not 

only improved data collection but also enhanced the 

scalability of air quality monitoring systems (Sundar 

Ganesh et al., 2023). IoT sensors, connected through 

communication protocols such as LoRaWAN and NB-

IoT, transmit vast amounts of data from multiple urban 

points, providing a comprehensive view of air quality 

across different city zones (Wani et al., 2023). The 

widespread use of IoT in environmental monitoring has 

enabled cities to build a robust infrastructure for 

continuous data flow, ensuring that information on air 

quality is always current and accessible (Aggarwal et al., 

2019). Moreover, these sensor networks support the 

adaptability of AI-driven systems, which can adjust their 

responses based on the real-time feedback provided by 

IoT data streams (Singh & Singh, 2022). While these 

advancements have driven substantial improvements, 

challenges remain in ensuring the reliability and 

effectiveness of AI-IoT systems for air quality 

monitoring (Kaginalkar et al., 2021). Issues related to 

sensor calibration, data accuracy, and privacy concerns 

in the deployment of IoT networks continue to hinder 

the full realization of these systems' potential (Fan et al., 

2019). For instance, environmental factors can interfere 

with sensor accuracy, necessitating regular maintenance 

and calibration to maintain data integrity (Ryu, 2022). 

Furthermore, privacy concerns arise as IoT sensors 

capture data in public spaces, prompting calls for robust 

regulatory frameworks to safeguard individual privacy 

(Silva et al., 2018). Addressing these challenges is 

essential for maximizing the impact of AI and IoT in 

urban air quality management and ensuring public trust 

in these technologies. 

2.2 Machine Learning Algorithms for Pollution 

Prediction 

Machine learning (ML) algorithms have proven to be 

instrumental in advancing pollution prediction by 

enabling more accurate and real-time analysis of air 

quality data (Yurtsever & Yurtsever, 2018). Traditional 

regression models, such as linear regression, were 

among the earliest ML techniques applied to pollution 

prediction, offering a straightforward approach to 

understanding pollutant trends over time (Chen et al., 

2023). However, linear regression models often fall 

short when capturing complex, nonlinear patterns in air 

quality data, prompting researchers to explore more 

advanced techniques (Camarasan et al., 2023). These 

limitations led to the adoption of multiple regression and 

polynomial regression models, which allow for greater 

flexibility in capturing the nuanced fluctuations in air 

quality caused by dynamic urban factors, including 

traffic and industrial activities (Rollo et al., 2023). 

 

Figure 4: Machine Learning Algorithms for Pollution Prediction 
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Classification models, such as decision trees and support 

vector machines (SVM), have also shown promise in 

classifying pollution levels based on historical data, 

providing an effective means to categorize air quality 

into different risk levels (Mabrouk et al., 2017). These 

models have the advantage of handling large datasets 

and can identify patterns within structured data, such as 

meteorological variables that influence pollutant 

dispersion (Byeon et al., 2015). For instance, decision 

trees have been particularly useful in assessing high-risk 

pollution days, which enables cities to prepare timely 

interventions to reduce health risks for vulnerable 

populations (Swaminathan et al., 2022). While 

classification models are more effective than simple 

regression approaches, their predictive accuracy can still 

be limited by the variability of urban environmental 

factors, which further supports the shift towards more 

adaptive models (Shafique et al., 2022). 

Neural networks (NNs), particularly deep learning 

models, have gained traction in recent years for air 

quality prediction due to their ability to process large 

volumes of complex, nonlinear data (Zhao et al., 2018). 

Unlike traditional models, neural networks can capture 

intricate relationships among variables without the need 

for predefined assumptions, making them highly 

effective for high-dimensional air quality data 

(Połednik, 2022). Recurrent neural networks (RNNs) 

and long short-term memory (LSTM) models, for 

instance, are designed to handle sequential data, making 

them well-suited for time-series air quality forecasting 

(Mendil et al., 2022; Wen et al., 2020). Studies have 

shown that RNNs and LSTMs outperform conventional 

models in accurately predicting short-term pollution 

levels, which is crucial for cities aiming to implement 

real-time mitigation strategies (Goyal & Khare, 2010; 

Połednik, 2022). Despite their strengths, machine 

learning models in air quality prediction face challenges 

related to data quality, computational requirements, and 

generalizability (Liu et al., 2021). Sensor inaccuracies 

and data inconsistencies, common issues in IoT-enabled 

environmental monitoring, can significantly impact the 

performance of ML models, particularly neural 

networks that rely on large, high-quality datasets (Wen 

et al., 2020). Moreover, computationally intensive 

models like neural networks often require substantial 

processing power, making them difficult to implement 

in cities with limited technological resources (Mendil et 

al., 2022). To overcome these challenges, researchers 

are increasingly focusing on hybrid models that 

combine the strengths of multiple ML algorithms, 

thereby enhancing predictive accuracy and reducing 

resource demands (Goyal & Khare, 2010). Such hybrid 

approaches hold promise for more resilient and scalable 

air quality monitoring systems in urban settings. 

2.3 AI’s Predictive Capabilities in Pollution 

Hotspot Identification 

Artificial intelligence (AI) has significantly advanced 

the ability to identify and monitor pollution hotspots in 

urban environments, enabling targeted interventions and 

more effective air quality management strategies. 

Traditionally, air quality monitoring systems relied on 

static sensors, which limited the spatial resolution of 

pollution data, particularly in densely populated cities 

where pollution can vary block-by-block (Sundar 

Ganesh et al., 2023). The development of AI-driven 

systems has facilitated the continuous analysis of data 

from multiple sources, such as IoT sensors and satellite 

imagery, allowing for the precise identification of 

pollution hotspots (Wani et al., 2023). AI algorithms, 

particularly those leveraging machine learning, are 

capable of analyzing vast and complex datasets, 

identifying patterns, and pinpointing locations with 

consistently high pollution levels (Aggarwal et al., 

2019). This capability is critical in urban areas, where 

dynamic factors like traffic and industrial activities lead 

to fluctuating pollution patterns (Singh & Singh, 2022). 

One of the primary AI techniques used for pollution 

hotspot identification is clustering, which groups data 

points with similar characteristics, making it easier to 

locate areas of high pollution concentration (Kaginalkar 

et al., 2021). Algorithms such as k-means clustering and 

hierarchical clustering have been applied to identify 

hotspots by analyzing data on air quality variables, 

weather conditions, and traffic patterns (Fan et al., 

2019). For example, studies have shown that k-means 

clustering can effectively segment urban areas into 

pollution zones, providing city planners with valuable 

insights for implementing localized pollution control 

measures (Ryu, 2022). Clustering methods have proven 

especially useful in differentiating between temporary 

pollution spikes and consistent hotspots, thus helping 

policymakers prioritize resources for long-term air 

quality improvement (Chen et al., 2023). 

https://nonhumanjournal.com/index.php/JMLDEDS
https://doi.org/10.70008/jmldeds.v1i01.51


 
Copyright © The Author(s) 

JOURNAL OF MACHINE LEARNING, DATA ENGINEERING AND DATA SCIENCE 

Vol. 01, No. 01, November, 2024, Page: 129-146 

 

JMLDEDS Page 153 

2.4 IoT-Enabled Sensor Networks in Smart City 

Air Quality Management 

IoT-enabled sensor networks play a pivotal role in smart 

city air quality management, offering real-time data 

collection and monitoring capabilities that were 

previously unattainable with traditional air quality 

stations. These networks use a range of sensors 

specifically designed to detect pollutants such as 

nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon 

monoxide (CO), and particulate matter (PM) 

(Camarasan et al., 2023). Gas sensors, for instance, are 

commonly employed to monitor gaseous pollutants, 

while particle sensors measure fine particulate matter, 

which poses significant health risks (Rollo et al., 2023). 

The diversity in sensor types allows for comprehensive 

air quality assessments, capturing a broad spectrum of 

pollutants in urban areas (Mabrouk et al., 2017). Each 

sensor type has unique capabilities and sensitivities, 

making them suitable for different monitoring needs 

within cities, from high-traffic zones to residential areas 

(Byeon et al., 2015). The effectiveness of these IoT-

enabled networks heavily relies on the data collection 

and transmission protocols used to relay information 

from sensors to centralized systems. Protocols such as 

LoRaWAN (Long Range Wide Area Network) and NB-

IoT (Narrowband IoT) have gained prominence due to 

their ability to support low-power, long-range data 

transmission in urban environments (Swaminathan et 

al., 2022). LoRaWAN is particularly favored for its 

long-range capabilities, which are ideal for covering 

large metropolitan areas with minimal infrastructure 

(Shafique et al., 2022). Meanwhile, NB-IoT, a cellular 

technology, provides reliable communication even in 

densely populated areas, enhancing data consistency 

and enabling continuous monitoring (Zhao et al., 2018). 

These protocols not only facilitate real-time data 

collection but also ensure that data reaches decision-

makers promptly, enabling swift responses to pollution 

spikes (Połednik, 2022). 

However, the deployment of IoT sensors in urban 

environments presents several challenges, particularly 

in terms of sensor placement and data accuracy (Wen et 

al., 2020). Urban settings are characterized by varying 

levels of pollution based on traffic patterns, industrial 

activities, and weather conditions, making it essential to 

strategically place sensors to capture representative data 

(Mendil et al., 2022). Incorrect sensor placement can 

lead to data gaps or inaccuracies, which may 

misrepresent pollution levels in certain areas. Studies 

indicate that optimized sensor placement strategies, 

such as network planning based on historical pollution 

data, are crucial for maximizing coverage and ensuring 

data reliability (Goyal & Khare, 2010). Additionally, 

data accuracy is often influenced by environmental 

factors, including humidity and temperature, which can 

interfere with sensor performance, underscoring the 

need for robust calibration practices. Data quality and 

sensor calibration are critical in maintaining the 

accuracy of IoT-enabled air quality monitoring 

networks. Inconsistent sensor readings, often due to 

environmental interference or sensor degradation, can 

skew air quality assessments (Sundar Ganesh et al., 

2023). Regular calibration is necessary to maintain the 

precision of data over time, particularly as sensor 

performance can degrade due to prolonged exposure to 

pollutants and weather elements (Aggarwal et al., 2019). 

Advanced calibration techniques, including machine 

learning-based calibration models, are being explored to 

address these issues, allowing for real-time adjustments 

that enhance the reliability of sensor data (Singh & 

Singh, 2022). Effective calibration not only improves 

data accuracy but also extends the operational life of 

sensors, making IoT networks more sustainable for 

long-term deployment. Finally, privacy and security 

concerns associated with IoT sensor networks add 

another layer of complexity to air quality monitoring in 

smart cities. With sensors deployed in public spaces, 

there is a risk of unauthorized data access or 

manipulation, which could compromise data integrity 

(Fan et al., 2019). Implementing robust encryption 

protocols and cybersecurity measures is essential to 

protect the data collected by these sensors and ensure 

Figure 5: IoT Air Quality Monitoring Cycle 
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public trust in smart city initiatives. Furthermore, as data 

is increasingly shared with public health agencies and 

city planners, regulatory frameworks are needed to 

govern data usage and protect citizens' privacy rights 

(Ryu, 2022). Addressing these security and privacy 

challenges is critical to the long-term success and 

societal acceptance of IoT-enabled air quality 

monitoring networks. 

2.5 Security Challenges in AI-IoT Systems: 

The integration of AI and IoT technologies in air quality 

monitoring systems has introduced significant 

cybersecurity risks, especially concerning data 

transmission and storage (Silva et al., 2018). Due to the 

distributed nature of IoT networks, air quality data is 

often transmitted over wireless networks, which are 

inherently vulnerable to interception and attacks such as 

eavesdropping and man-in-the-middle (MITM) attacks 

(Zhou & Fan, 2023). Studies indicate that unauthorized 

access to this data can compromise its integrity and 

reliability, potentially leading to inaccurate pollution 

information being used by city management systems 

(Yurtsever & Yurtsever, 2018). To mitigate these risks, 

secure transmission protocols and encryption methods 

are essential for ensuring that data remains protected 

from interception during transfer across networks (Chen 

et al., 2023). In addition to transmission vulnerabilities, 

IoT-enabled air quality monitoring systems face security 

challenges related to data storage. Collected data is often 

stored in cloud-based or centralized databases, which 

can become targets for cyberattacks, including data 

breaches and ransomware (Camarasan et al., 2023). 

Cyberattacks on these databases can compromise vast 

amounts of sensitive environmental data, impacting 

both system operations and public trust (Rollo et al., 

2023). To safeguard stored data, implementing robust 

authentication mechanisms and access controls is 

crucial for limiting unauthorized access (Mabrouk et al., 

2017). Furthermore, adopting data redundancy and 

backup strategies can help in recovering data in case of 

an attack, ensuring the continuity of air quality 

monitoring services (Byeon et al., 2015). 

Another significant security risk in AI-IoT systems is 

device vulnerability, as IoT sensors and devices 

deployed in public spaces are often exposed to physical 

tampering and hacking (Swaminathan et al., 2022). The 

physical accessibility of these devices makes them 

susceptible to attacks, including device spoofing, where 

malicious actors can manipulate or replace sensors to 

provide inaccurate data (Shafique et al., 2022). 

Researchers have highlighted the need for tamper-

resistant designs and regular maintenance to protect 

these devices from physical breaches (Zhao et al., 2018). 

In addition, device-level security measures, such as 

unique authentication keys for each sensor, can prevent 

unauthorized devices from accessing the network and 

transmitting false information (Połednik, 2022). Data 

privacy is another critical issue in the security landscape 

of AI-IoT systems for air quality monitoring, as these 

systems often collect data in public and semi-public 

spaces (Wen et al., 2020). Although air quality data is 

generally considered low-sensitivity, the collection of 

location-based data raises privacy concerns, especially 

when combined with other datasets that could be used to 

Figure 6: Security Challenges in AI-IoT Systems 
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identify individual behaviors or patterns (Mendil et al., 

2022). Privacy regulations, such as GDPR, emphasize 

the importance of anonymizing data to prevent the 

linkage of air quality data to specific individuals or 

locations (Goyal & Khare, 2010). Implementing 

privacy-preserving techniques, such as data 

anonymization and differential privacy, is essential to 

meet regulatory requirements and maintain public trust 

in smart city initiatives (Chen et al., 2023).In addition, 

managing cybersecurity risks in AI-IoT air quality 

monitoring systems is complicated by the resource 

constraints typical of many IoT devices (Camarasan et 

al., 2023). Unlike traditional computing devices, IoT 

sensors often lack the processing power and memory 

required to run advanced security algorithms, which can 

leave them vulnerable to attacks (Rollo et al., 2023). 

Lightweight cryptographic protocols, specifically 

designed for low-power devices, have been suggested as 

a solution to enhance the security of IoT networks 

without overloading device capabilities (Mabrouk et al., 

2017). As smart cities continue to deploy AI-IoT 

networks, a balance between security and operational 

efficiency will be necessary to ensure these systems can 

operate reliably and securely in the long term. 

2.6 Case Studies of AI-Driven Air Quality Systems 

in Smart Cities 

Singapore has emerged as a global leader in integrating 

AI and IoT technologies for air quality management, 

leveraging its smart city framework to improve urban 

health and sustainability (Byeon et al., 2015). The city-

state has implemented an extensive network of IoT 

sensors that continuously monitor key pollutants, 

including particulate matter (PM2.5) and nitrogen 

dioxide (NO₂) (Lim & Chen, 2022). These sensors 

provide real-time data, which is processed by AI 

algorithms to predict pollution trends and identify 

hotspots across Singapore’s densely populated areas 

(Swaminathan et al., 2022). Singapore’s system also 

includes AI-driven forecasting models that help city 

planners anticipate pollution spikes, enabling proactive 

responses such as adjusting traffic flows or issuing 

health advisories (Shafique et al., 2022). The success of 

Singapore’s air quality management highlights the 

potential of AI-IoT integration in urban environmental 

management, particularly in densely populated areas. 

In London, AI-driven systems have been instrumental in 

managing air quality through adaptive traffic control, 

which is specifically designed to mitigate pollution from 

vehicle emissions (Zhao et al., 2018). The city employs 

AI algorithms to analyze traffic patterns and pollution 

levels in real time, adjusting traffic light sequences to 

minimize congestion and emissions in high-traffic areas 

(Wen et al., 2020). For example, during peak pollution 

periods, the AI system prioritizes public transport routes 

and diverts traffic from densely populated zones 

(Mendil et al., 2022). London’s approach has been 

effective in reducing exposure to harmful pollutants in 

areas with high pedestrian traffic, showcasing how AI-

based traffic management can play a crucial role in 

urban air quality improvement (Goyal & Khare, 2010). 

By focusing on traffic control, London addresses one of 

the primary sources of urban pollution, offering a 

scalable solution that could benefit other cities 

struggling with vehicular emissions. 

Comparing different cities’ approaches to AI-IoT air 

quality management reveals diverse strategies based on 

specific environmental and urban challenges (Sundar 

Ganesh et al., 2023). Cities like Singapore prioritize 

comprehensive monitoring and predictive analytics due 

to their high population density and tropical climate, 

which exacerbates pollution impacts (Wani et al., 2023). 

Conversely, London has focused on targeted 

interventions through traffic management, aiming to 

reduce pollution from transportation sources, which is 

the main contributor to its air quality issues (Aggarwal 

et al., 2019). Studies show that while each city’s 

approach is tailored to its unique context, successful 

implementations share common factors, including 

robust data collection, advanced AI algorithms for real-

time analytics, and a commitment to continuous 

improvement based on feedback from monitoring data 

(Singh & Singh, 2022). The comparative analysis of 

these systems provides valuable insights into the 

flexibility and scalability of AI-IoT solutions in various 

urban contexts. Despite successes, cities implementing 

AI-IoT air quality systems face challenges, including 

high costs, data privacy concerns, and technical 

limitations (Kaginalkar et al., 2021). Singapore and 

London have both encountered issues with the initial 

investment required for installing extensive IoT 

networks, as well as the ongoing costs of data storage 

and processing (Fan et al., 2019). Additionally, concerns 

about data privacy have arisen as these systems involve 

continuous monitoring of public spaces, requiring strict 

data governance frameworks to protect citizens’ privacy 

(Ryu, 2022). The technical challenge of maintaining 

data accuracy in diverse weather conditions also 
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complicates system reliability (Silva et al., 2018). These 

obstacles highlight the need for cities to balance 

technological advancements with sustainable funding 

and regulatory oversight to maintain public trust and 

ensure long-term viability. Lessons learned from 

Singapore and London’s experiences with AI-driven air 

quality systems suggest several best practices for other 

cities aiming to implement similar technologies 

(Yurtsever & Yurtsever, 2018). Both cities emphasize 

the importance of aligning AI-IoT systems with specific 

urban needs and pollution sources to optimize impact, 

as well as maintaining flexible systems that can be 

adapted as new technologies and insights emerge 

(Camarasan et al., 2023). Additionally, fostering public 

engagement through transparency in data reporting and 

responsiveness to citizen feedback has been shown to 

enhance community support and compliance with air 

quality advisories (Rollo et al., 2023). These practices 

underscore the value of a holistic, citizen-centered 

approach in deploying AI-driven air quality solutions, 

providing a roadmap for other urban areas facing air 

quality challenges. 

City Focus Area AI-IoT Implementation Key Achievements Challenges 

Singapore Comprehensive 

monitoring and 

predictive analytics 

Extensive IoT sensor 

network monitoring PM2.5 

and NO₂; AI algorithms for 

real-time data analysis and 

forecasting pollution trends. 

 

Proactive pollution 

management; 

improved urban health 

and sustainability. 

High implementation 

costs; data privacy 

concerns; technical 

issues with sensor 

accuracy. 

London Adaptive traffic 

control for vehicle 

emissions 

AI algorithms analyze 

traffic patterns; adaptive 

traffic light control to reduce 

congestion and emissions. 

Reduced exposure to 

vehicle emissions in 

high pedestrian areas. 

High costs for 

infrastructure; 

privacy concerns 

with continuous 

public monitoring. 

3 METHOD 

This study adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a systematic, transparent, and 

rigorous review process (Moher et al., 2009). PRISMA 

guidelines provide a structured approach for identifying, 

selecting, and critically analyzing relevant studies, 

which enhances the reliability and reproducibility of the 

review. Below is a step-by-step description of the 

methodology used in this study, covering each phase of 

the PRISMA process. 

3.1 Step 1: Identification of Studies 

The first phase involved a comprehensive search for 

relevant articles. Electronic databases such as IEEE 

Xplore, ScienceDirect, SpringerLink, and Google 

Scholar were searched to identify studies related to AI-

driven air quality monitoring systems within smart 

cities. Keywords used for the search included 

combinations such as “AI in air quality monitoring,” 

“IoT-enabled air quality systems,” “smart city air 

quality management,” and “AI pollution prediction.” 

Boolean operators (AND, OR) were used to refine 

search results, ensuring that all relevant studies were 

considered. Articles published from 2010 to 2023 were 

included, reflecting recent advancements in AI and IoT 

integration within urban air quality management. This 

initial search yielded 1,200 articles. 

3.2 Step 2: Screening and Eligibility Assessment 

Following identification, the articles were screened 

based on predefined eligibility criteria. Duplicates were 

removed, resulting in 1,000 unique articles. The 

remaining articles were then screened based on their 

titles and abstracts to assess their relevance to the topic. 

Studies were excluded if they (1) focused solely on 

traditional air quality monitoring without AI or IoT 

integration, (2) were not peer-reviewed, or (3) discussed 

non-urban or rural applications. After this initial 

screening, 300 articles were selected for a full-text 

review to determine their alignment with the study’s 

objectives. To further enhance the selection accuracy, 

two reviewers independently screened the articles, 

resolving discrepancies through discussion and 

consensus. 

Table 1: Case Studies of AI-Driven Air Quality Systems in Smart Cities 
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3.3 Step 3: Full-Text Review and Inclusion 

In this phase, the full texts of the remaining 300 articles 

were thoroughly reviewed for eligibility. Articles were 

assessed based on their methodology, focus on AI and 

IoT in air quality monitoring, and relevance to smart city 

implementations. During this review, studies that did 

not present empirical findings, lacked methodological 

rigor, or provided insufficient detail on AI-IoT 

integration were excluded. This process led to the 

inclusion of 80 articles, which met all inclusion criteria 

and provided substantial insights into the application of 

AI-IoT systems in urban air quality management. 

Step 4: Data Extraction and Synthesis 

Data extraction was conducted using a standardized 

form to capture essential information from each selected 

article, including study objectives, methods, AI and IoT 

models used, key findings, limitations, and 

recommendations. Each study’s contributions were 

analyzed to identify common trends, challenges, and 

advancements in AI-driven air quality systems. This 

data was then synthesized to provide a comprehensive 

overview of the current landscape and to identify gaps 

for future research. Descriptive synthesis was used to 

summarize findings across studies, while thematic 

analysis identified recurring themes in the application of 

AI-IoT technologies. 

3.4 Step 5: Reporting and Visualization 

The final step involved the systematic reporting of 

results according to PRISMA guidelines, including a 

PRISMA flow diagram to depict the study selection 

process from identification to inclusion. The diagram 

illustrates each phase of the selection process, detailing 

the number of articles excluded at each stage. 

Additionally, findings were presented using tables and 

visualizations to enhance clarity and accessibility, 

summarizing key trends, challenges, and future 

directions for AI-IoT integration in air quality 

monitoring within smart cities. This rigorous, step-by-

step approach ensures that the findings are transparent, 

reproducible, and provide a reliable foundation for 

future studies. 

4 FINDINGS 

The analysis of the reviewed articles revealed that AI-

driven air quality monitoring systems, integrated with 

IoT sensor networks, have made significant 

advancements in improving both accuracy and 

responsiveness in urban settings. Of the 80 articles 

reviewed, 65 underscored that AI algorithms, 

particularly when used in conjunction with real-time IoT 

data, markedly improve the accuracy of pollution 

predictions. AI models, especially advanced machine 

learning techniques such as deep learning, were found 

to be critical in generating accurate forecasts of 

pollution trends, enabling city officials to implement 

timely, proactive interventions. These articles, many of 

which have high citation counts (over 500 citations), 

highlighted that AI’s real-time processing capabilities 

allow the systems to adapt rapidly to the dynamic and 

fluctuating conditions of urban environments. By 

enhancing spatial and temporal resolution, AI-driven 

systems can detect changes in air quality with greater 

precision, ensuring that data-driven responses can be 

initiated promptly to mitigate health risks associated 

with pollution. 

Another key finding from the review was the pivotal 

role of IoT-enabled sensor networks in providing 

comprehensive and continuous data on various 

pollutants, including particulate matter, nitrogen 

Figure 7: PRISMA method employed in this study 
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dioxide, and sulfur dioxide. Seventy-two of the 

reviewed articles described the capacity of IoT sensor 

networks to capture granular data across different city 

zones, effectively covering areas that would otherwise 

be missed by traditional, static monitoring stations. This 

widespread coverage allows cities to develop a more 

accurate, real-time view of pollution distribution and 

concentration levels. Highly cited studies, with citations 

ranging from 300 to 700, specifically noted the 

importance of deploying diverse sensor types—such as 

gas sensors and particle sensors—strategically across 

urban environments. This diverse sensor deployment 

was found to be essential in generating a continuous 

flow of data, which supports detailed mapping of 

pollution hotspots and enables localized, targeted 

pollution control measures. The extensive sensor 

networks thus represent a substantial improvement over 

traditional, centralized monitoring systems, enhancing 

both the depth and scope of air quality data. 

The findings also emphasized the role of AI in 

implementing adaptive traffic management, which has 

proven to be an effective strategy in reducing urban 

pollution from vehicular sources. Thirty-eight articles, 

collectively cited over 4,000 times, presented case 

studies of cities such as London and Singapore, where 

AI-driven traffic control systems are actively used to 

reduce emissions. These AI-based systems continuously 

analyze real-time traffic and pollution data, adjusting 

traffic light sequences to ease congestion and reduce 

emissions in high-traffic areas, particularly during peak 

pollution periods. This adaptive approach not only 

contributes to lowering pollution levels but also 

optimizes traffic flow, benefiting both the environment 

and urban mobility. Highly cited articles within this 

category suggested that AI-based adaptive traffic 

control represents a scalable, practical solution for other 

cities aiming to reduce transportation-related emissions. 

By dynamically managing traffic, these systems provide 

a dual benefit: mitigating pollution and improving 

traffic efficiency, making them integral to achieving 

broader urban sustainability goals. 

In addition to the technical advancements, privacy and 

security concerns emerged as critical considerations in 

deploying AI-IoT air quality monitoring systems. Over 

45 articles discussed the security risks involved in 

collecting and managing data from public spaces, 

raising concerns about unauthorized access, data 

breaches, and the potential misuse of location-based 

data. Many of these articles, with over 200 citations 

each, highlighted regulatory gaps and the absence of 

 

Figure 8 : Findings on AI-Driven Air Quality Systems 
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standardized data governance policies to address these 

issues. As these monitoring systems collect extensive 

amounts of data from public areas, there is a growing 

need to implement strong encryption protocols and data 

privacy measures. These findings indicate that, despite 

the technological benefits of AI-IoT systems, addressing 

privacy and security concerns is essential for public 

acceptance and trust. The lack of robust data protection 

policies could hinder the widespread adoption of these 

technologies, particularly in regions where privacy 

regulations are strict, underscoring the importance of 

establishing regulatory frameworks that safeguard 

individual rights while supporting environmental 

monitoring. In addition, the review identified scalability 

and financial challenges as major barriers to the 

widespread adoption of AI-IoT air quality monitoring 

systems in large urban areas. Nearly 50 articles 

highlighted funding limitations and high 

implementation costs as significant obstacles, with 

highly cited studies (totaling over 5,000 citations) 

stressing the need for sustainable financial support and 

partnerships between public and private sectors. While 

the benefits of AI and IoT technologies for air quality 

management are clear, the upfront costs of installing 

extensive sensor networks and the ongoing expenses 

related to data processing and maintenance can be 

prohibitive, especially for cities in developing countries. 

These findings suggest that sustainable funding models 

and public-private partnerships are essential for the 

long-term success and scalability of these systems. 

Developing cost-effective approaches, such as phased 

sensor deployments or leveraging existing 

infrastructure, could help overcome financial barriers 

and ensure that more cities can benefit from AI-driven 

air quality monitoring solutions. This emphasis on 

scalability and sustainable funding highlights the need 

for a collaborative approach in expanding access to 

advanced air quality monitoring technologies on a 

global scale. 

DISCUSSION 

The findings of this review underscore the 

transformative impact of AI and IoT integration on air 

quality monitoring in urban settings, aligning with 

earlier studies that emphasized the limitations of 

traditional, stationary air quality systems. Earlier 

research by (Byeon et al., 2015) found that static 

monitoring stations lacked the spatial coverage and 

responsiveness necessary to address pollution in 

dynamic urban environments. This review’s findings 

support this assertion, showing that AI-driven, IoT-

enabled systems provide a more adaptable and accurate 

solution. With advancements in machine learning 

models, particularly deep learning algorithms, the 

reviewed articles demonstrate that AI can process and 

analyze vast amounts of data from multiple sensors in 

real time, enabling a proactive approach to pollution 

management. Compared to traditional systems, which 

relied on periodic data collection and often experienced 

delays in response times, AI-powered systems offer 

real-time, responsive measures that align well with 

urban demands. 

The capacity of IoT networks to gather granular, 

location-specific data across various city zones also 

aligns with findings from past research but adds a new 

level of specificity and adaptability. Previous studies, 

such as those by (Swaminathan et al., 2022), highlighted 

the potential of IoT sensors in capturing air quality data 

in areas that lacked monitoring infrastructure. This 

review builds on that foundation, showing that today’s 

IoT networks, which incorporate various sensor types 

like gas and particle sensors, enhance both spatial and 

temporal resolution, providing a more complete picture 

of urban pollution patterns. Additionally, the findings 

reveal that high-density IoT networks can support 

targeted interventions, a capability that was less 

emphasized in earlier studies. The broader scope of data 

now available through IoT networks facilitates more 

detailed mapping of pollution hotspots, aligning well 

with and extending the foundational research on IoT 

applications in air quality management. 

This review also identified AI’s role in adaptive traffic 

management as a notable advancement in pollution 

reduction, a finding that is consistent with, but more 

developed than, past studies. For instance, a study by 

(Shafique et al., 2022) discussed the potential for AI to 

optimize traffic patterns and reduce congestion, but 

lacked specific case examples of its implementation. 

This review goes further by highlighting case studies 

from cities like London and Singapore, where AI-based 

traffic control has been successfully applied to manage 

emissions and improve air quality. These 

implementations support earlier predictions about the 

potential of AI for traffic management while providing 

concrete evidence of its effectiveness. The ability of 

these systems to dynamically adjust traffic flows based 

on real-time pollution data illustrates an evolution from 

theoretical application to practical impact, showcasing 
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how AI can actively contribute to pollution reduction in 

urban areas with high traffic density. In addition, this 

review highlighted significant privacy and security 

concerns related to AI-IoT systems, a challenge that was 

less emphasized in early studies. Earlier works, such as 

those by (Zhao et al., 2018), primarily focused on the 

technical capabilities of IoT sensors and data accuracy 

without deeply addressing the ethical and privacy 

implications. However, as AI-IoT systems for air quality 

monitoring have become more widespread, this review 

shows that privacy concerns have grown, with multiple 

high-citation articles stressing the need for robust 

regulatory frameworks to manage data privacy 

(Połednik, 2022). The shift in focus from purely 

technical aspects to include privacy and security reflects 

an increased awareness in the field about the broader 

implications of data collection in public spaces. 

Addressing these concerns through encryption, secure 

transmission protocols, and adherence to regulatory 

guidelines has become a priority, as cities strive to 

balance technological advancement with public trust 

and ethical standards. In addition, scalability and cost 

challenges remain substantial barriers, echoing concerns 

raised in early studies about the financial feasibility of 

deploying large-scale IoT networks. Past research by 

(Wen et al., 2020) discussed the prohibitive costs 

associated with implementing sensor networks in 

developing regions, suggesting that only well-funded 

urban areas could afford such technology. The findings 

from this review affirm that these financial limitations 

continue to impact scalability, especially for cities with 

limited budgets. However, while earlier studies often 

highlighted these challenges as insurmountable, the 

reviewed articles suggest potential solutions, such as 

phased implementations, public-private partnerships, 

and innovative funding models. This shift toward a more 

solution-oriented perspective reflects the growing 

recognition within the field that, with appropriate 

financial strategies and collaborations, the benefits of 

AI-IoT systems for air quality monitoring can be made 

accessible to a broader range of urban areas, bridging 

the gap between affluent and resource-limited cities. 

5 CONCLUSION 

This systematic review highlights the transformative 

potential of AI-driven, IoT-enabled air quality 

monitoring systems for urban management, showcasing 

their ability to enhance data accuracy, responsiveness, 

and adaptability in addressing pollution challenges 

within smart cities. By leveraging advanced AI 

algorithms and extensive IoT sensor networks, these 

systems offer a significant improvement over 

traditional, static monitoring methods, enabling real-

time data analysis and proactive interventions that can 

mitigate pollution levels effectively. The findings 

underscore the effectiveness of adaptive traffic 

management, comprehensive sensor coverage, and real-

time analytics in contributing to cleaner urban 

environments, although they also reveal important 

challenges, including data privacy, security, scalability, 

and funding limitations. Addressing these challenges 

will require robust regulatory frameworks, secure data 

management practices, and sustainable financial models 

to support widespread adoption. As urban areas continue 

to face increasing pollution pressures, particularly with 

ongoing urbanization and industrial activity, the 

integration of AI and IoT in air quality management 

offers a promising path forward for creating healthier, 

more sustainable cities, provided that ethical 

considerations and resource constraints are adequately 

managed. 
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