
 
 

 

 
 
 

 

 
JMLDEDS Page 1 

JOURNAL OF MACHINE LEARNING, DATA 

ENGINEERING AND DATA SCIENCE 

 
Copyright © The Author(s) 

Vol.  01, No. 01, October, 2024 
DoI:10.70008/jmldeds.v1i01.36 

Page No: 01-18 

 
A SYSTEMATIC LITERATURE REVIEW OF PREDICTIVE MODELS AND ANALYTICS IN 

AI-DRIVEN CREDIT SCORING 

 

Md Hasanujamman Bari1 

Corresponding Email: hasanujamman.bari@gmail.com 

Graduate Researcher, Management Information Systems, Lamar University, Texas, USA 

https://orcid.org/0009-0006-8463-5979 

 

Shaharima Juthi2 

1Master of Science in Management Information Systems, College of Business, Lamar University, Texas, USA 

Email: sjuthi@lamar.edu 

https://orcid.org/0009-0009-5232-6276 

 

Asha Moni Mistry3 
3MBA in Marketing and Business Analytics; College of Business, Lamar University, Texas, USA 

Email: amistry@lamar.edu 

https://orcid.org/0009-0009-3736-3589 

 

Md Kamrujjaman4 
2Master of Science in Management Information Systems, College of Business, Lamar University, Texas, USA 

Email: mkamrujjaman@lamar.edu 

https://orcid.org/0009-0002-8105-7086 

 

Keywords  ABSTRACT 

AI-driven Credit Scoring 

Predictive Models 

Machine Learning 

Risk Assessment 

Financial Technology (FinTech) 

 

 • This systematic review examines the transformative role of AI-driven models in credit 

scoring, highlighting their advances over traditional statistical methods in terms of 

predictive accuracy, adaptability, and inclusivity. By synthesizing findings from 70 

studies, this review demonstrates that machine learning techniques, particularly 

ensemble models such as random forests and gradient boosting, effectively capture 

complex, non-linear relationships in borrower data, providing more accurate risk 

assessments across diverse demographics. Deep learning models, especially 

convolutional and recurrent neural networks, extend credit scoring capabilities to 

unstructured and alternative data sources, supporting financial inclusion by enabling 

assessments of individuals without traditional credit histories. Hybrid models that 

integrate logistic regression with neural networks offer an optimal balance between 

interpretability and predictive power, addressing regulatory demands for 

transparency while maintaining robust accuracy. Ensemble techniques like stacking 

and blending enhance model adaptability, allowing credit scoring systems to integrate 

multiple perspectives and improve prediction accuracy in varied borrower contexts. 

Despite these advancements, challenges remain in the form of ethical concerns and the 

need for model interpretability, particularly with complex deep learning architectures. 

The review underscores the importance of developing fairness-aware and explainable 

AI frameworks to ensure that as AI-driven credit scoring evolves, it remains both 

transparent and equitable. These insights suggest that with careful attention to ethics 

and transparency, AI has the potential to create a more inclusive and resilient credit 

scoring landscape, accommodating the needs of an increasingly diverse global 

population. 
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1 Introduction 

Credit scoring serves as a fundamental tool in financial 

decision-making, providing lenders with critical 

insights into the risk of potential borrowers 

(Gambacorta et al., 2024). Early credit scoring systems 

were predominantly statistical, relying on conventional 

algorithms such as logistic regression and linear 

discriminant analysis, which used structured data like 

past credit histories, financial records, and demographic 

details (Tsai & Chen, 2010). However, these traditional 

methods have shown limitations in accurately predicting 

borrower risk, particularly in complex financial 

environments with diverse borrower backgrounds 

(Braggion et al., 2023; Gambacorta et al., 2024). 

Recognizing these limitations, financial institutions 

have progressively integrated Artificial Intelligence 

(AI) technologies into their credit scoring processes, 

allowing them to better analyze unstructured and 

dynamic data (Berg, Burg, et al., 2019). AI-driven credit 

scoring models mark a significant evolution in risk 

assessment, with predictive capabilities that surpass 

traditional statistical methods and offer an adaptive 

solution in today's rapidly changing financial landscape 

(Tang, 2019). In addition, as AI applications in credit 

scoring matured, machine learning (ML) methods like 

decision trees, support vector machines (SVM), and 

basic neural networks emerged as viable alternatives to 

traditional techniques, capturing non-linear 

relationships within the data (Fuster et al., 2021). ML 

techniques, particularly ensemble models like random 

forests and gradient boosting, have gained traction for 

their ability to improve prediction reliability and handle 

more complex data structures than their predecessors 

(Zhu et al., 2016). These models have been particularly 

effective in addressing issues of overfitting and 

improving prediction accuracy in diverse borrower 

groups (Jagtiani & Lemieux, 2019). Researchers have 

found that ensemble learning techniques, by combining 

multiple model outputs, provide a more comprehensive 

risk assessment, which is crucial for decision-making in 

high-stakes financial contexts (Hertzberg et al., 2018; 

Iyer et al., 2016). Such advancements underscore the 

potential of ML in enhancing the robustness and 

adaptability of credit scoring systems, particularly in 

cases where traditional data sources are limited or 

incomplete (Pietukhov et al., 2023). 

The adoption of deep learning (DL) in recent years has 

further transformed the credit scoring landscape, 

introducing models with superior predictive capabilities 

for handling large, multi-dimensional data sets (Zhao et 

al., 2019). DL architectures, including convolutional 

neural networks (CNNs) and recurrent neural networks 

(RNNs), have shown exceptional performance in 

analyzing unstructured data sources, such as transaction 

logs, social media data, and geolocation information, to 

produce more accurate credit risk predictions (Alom et 

al., 2018). These advancements enable financial 

institutions to assess creditworthiness beyond traditional 

credit bureau data, offering a more inclusive approach 

for individuals lacking conventional credit histories 

(Pietukhov et al., 2023). For example, CNNs, with their 

proficiency in feature extraction, can detect behavioral 

patterns from transaction histories, while RNNs are 

effective in understanding time-series data trends within 

borrower behaviors (Chen & Jahanshahi, 2018). These 

deep learning models are particularly valuable in 

regions where credit histories are sparse, providing a 

means to assess risk accurately for previously 

underserved demographics (Alom et al., 2017). 

Additionally, hybrid models, which integrate machine 

learning and deep learning components, are emerging as 

a frontier in AI-driven credit scoring (Shelhamer et al., 

2016). These models combine the interpretability of 

traditional methods, such as logistic regression, with the 

predictive power of neural networks, creating a balance 

that is effective in diverse financial environments (Chen 

& Jahanshahi, 2018). For instance, Hubel and Wiesel 

(1968) illustrated that hybrid models combining logistic 

regression with neural networks could address complex 

borrower profiles while preserving model transparency. 

This adaptability has proven essential in emerging 

markets, where data availability and quality vary 

widely, necessitating a flexible approach to credit risk 

assessment (Jeong et al., 2016). Studies further 

demonstrate that hybrid models are more capable of 

handling challenges associated with feature selection 

and model overfitting, leading to more stable and 

generalizable predictions across various customer 

segments (Alom et al., 2018; Jeong et al., 2016). 

 

 

Figure 1: Credit Score Measurement 
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Despite the potential benefits of AI in credit scoring, 

challenges persist, especially concerning the ethical 

implications of AI models, including issues of fairness, 

transparency, and accountability (Zhao et al., 2019). AI 

models, particularly complex DL architectures, can be 

perceived as “black boxes,” making it difficult for 

regulators and stakeholders to understand the decision-

making process (Pietukhov et al., 2023; Ronao & Cho, 

2016). This lack of interpretability raises concerns about 

potential biases in credit scoring, as certain algorithms 

may inadvertently discriminate against specific 

demographic groups (Alom et al., 2018). As regulatory 

frameworks strive to keep pace with AI advancements, 

researchers have advocated for the development of fair, 

accountable, and transparent (FAT) models that align 

with ethical standards and ensure equal access to credit 

(Pietukhov et al., 2023). There is a growing focus on 

creating frameworks and tools for interpretable AI, 

enabling financial institutions to validate their models 

against regulatory and ethical requirements, thus 

fostering trust in AI-driven credit scoring systems (Gu 

et al., 2018). The rapid evolution of AI in credit scoring 

reflects a shift from reliance on traditional statistical 

techniques toward highly adaptable, data-intensive 

models capable of capturing intricate borrower 

behaviors (Jeong et al., 2016). As predictive analytics 

and AI continue to reshape credit scoring, there is an 

increasing need to balance technological advancement 

with ethical considerations and regulatory compliance. 

This review examines these advancements 

comprehensively, highlighting the strengths and 

limitations of AI models in credit scoring while offering 

insights into emerging trends and research directions 

that address both practical applications and ethical 

implications. In this systematic review, the objective is 

to comprehensively synthesize existing research on AI-

driven predictive models and analytics in credit scoring, 

examining their accuracy, reliability, and ethical 

implications. Following the PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines, the review aims to evaluate a 

broad range of AI models—including machine learning, 

deep learning, and hybrid approaches—used to predict 

credit risk. This study seeks to assess model 

performance, data sources, and the impact of AI-driven 

solutions on credit scoring accuracy and inclusivity. By 

screening and selecting studies through rigorous 

inclusion and exclusion criteria, the review will address 

both the effectiveness and limitations of AI models in 

credit risk assessment, aiming to identify patterns, 

strengths, and challenges across diverse borrower 

demographics and financial environments. 

Additionally, the review will include an analysis of 

ethical considerations, specifically focusing on 

transparency, fairness, and bias, to understand the 

broader implications of AI in credit scoring.

 

2 Literature Review 

This section presents a systematic review of the 

evolution, methodologies, and applications of AI-driven 

predictive models in credit scoring, with a focus on 

machine learning, deep learning, and hybrid approaches. 

The literature review examines both the predictive 

performance and ethical considerations of these models, 

exploring their effectiveness in addressing traditional 

Figure 2: Credit scoring with AI framework 

 

 

Source: Snorkel Cloud (2024) 
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credit scoring limitations. As AI continues to 

revolutionize the financial sector, this review delves into 

the unique contributions of various AI techniques, the 

challenges of model transparency, and ethical 

implications, providing a comprehensive view of the 

current landscape and future research needs in AI-driven 

credit scoring. 

2.1 Evolution of Credit Scoring Models 

In its early stages, credit scoring relied heavily on 

traditional statistical techniques such as logistic 

regression and linear discriminant analysis to predict 

borrower risk (Khandani et al., 2010). These methods 

assessed a borrower’s likelihood of default based on 

structured data, including credit history, income, and 

other financial metrics, allowing banks to make 

informed lending decisions ((Tsai & Chen, 2010). 

Although effective, these models had inherent 

limitations, particularly in their inability to capture non-

linear relationships in complex datasets, which led to 

accuracy issues, especially in diverse borrower 

segments (Zhu et al., 2016). Additionally, these 

statistical methods were largely inflexible, relying on 

static datasets that limited their predictive power over 

time (Berg, Burg, et al., 2019). Despite these challenges, 

traditional models laid the groundwork for more 

advanced credit risk assessment techniques, fostering 

the development of data-driven approaches in credit 

scoring. 

As data accessibility increased, machine learning (ML) 

techniques emerged, promising enhanced predictive 

accuracy through more flexible and adaptive modeling 

techniques (Frost et al., 2019). Decision trees, support 

vector machines (SVM), and basic neural networks 

became popular for credit scoring, enabling lenders to 

analyze non-linear patterns in borrower data with higher 

precision (Iyer et al., 2016). Ensemble learning models, 

such as random forests and gradient boosting, further 

improved the robustness and reliability of credit 

predictions by aggregating outputs from multiple 

algorithms to reduce overfitting and enhance accuracy 

(Fuster et al., 2021; Shamim, 2022). These 

advancements allowed credit scoring systems to adapt 

better to changing borrower profiles and market 

conditions, thus reducing the risk of default predictions 

based solely on historical data (Gambacorta et al., 

2024). Studies showed that ML techniques 

outperformed traditional statistical models, particularly 

in markets with heterogeneous borrower populations 

where non-linear relationships were prominent 

(Braggion et al., 2023). 

The integration of deep learning (DL) and big data in 

recent years has further revolutionized credit scoring, 

enhancing predictive capabilities by processing vast, 

multi-dimensional data sources beyond structured credit 

Figure 3: Evoluation of Credit Scoring Models 
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information (Jeong et al., 2016). Deep learning models, 

such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), have been 

successfully applied to unstructured data sources like 

social media, transactional histories, and alternative 

behavioral metrics, capturing complex borrower 

behaviors that traditional models could not address 

(Ronao & Cho, 2016). CNNs, for instance, can 

efficiently extract meaningful features from high-

dimensional data, while RNNs effectively capture 

temporal trends in borrower behavior, enhancing 

accuracy in dynamic financial environments (Qi et al., 

2017). As such, DL models have proven valuable in 

assessing creditworthiness among previously 

underserved populations, providing a more inclusive 

solution for credit risk analysis (Rawat & Wang, 2017). 

Most recently, hybrid models that integrate machine 

learning and deep learning approaches have been 

gaining attention as a balanced solution in AI-driven 

credit scoring (Alom et al., 2018). These models, such 

as those combining logistic regression with neural 

networks, offer an optimal balance between 

interpretability and predictive power, addressing both 

the complexity and opacity issues associated with pure 

DL models (Chen & Jahanshahi, 2018). By blending 

structured statistical insights with deep learning’s high-

dimensional capabilities, hybrid models can handle 

diverse and evolving credit environments effectively 

(Khan & Yairi, 2018). Studies indicate that hybrid 

models not only improve prediction accuracy but also 

enhance transparency and fairness, making them 

particularly suitable in financial contexts where 

regulatory requirements demand high accountability 

(Alom et al., 2018; Ronao & Cho, 2016). 

2.2 Machine Learning Models for Credit Scoring 

Decision trees have been widely used in credit scoring 

due to their interpretability and efficiency in handling 

structured, tabular data (Khan & Yairi, 2018). They 

allow for a straightforward visualization of the decision-

making process, providing transparency crucial for 

financial institutions (Zhao et al., 2019). Decision tree-

based ensemble methods, such as random forests and 

gradient boosting machines, have further enhanced 

credit scoring by aggregating multiple trees to reduce 

overfitting and improve predictive accuracy (Guo et al., 

2020; Zhao et al., 2019). Studies indicate that random 

forests, which build numerous decision trees and 

average their predictions, perform well in heterogeneous 

data environments, making them valuable for diverse 

borrower profiles (Chen & Jahanshahi, 2018; Qi et al., 

2017). Gradient boosting machines, in contrast, are 

particularly effective in reducing bias in credit scoring 

models by sequentially correcting errors from previous 

models, demonstrating superior performance in 

complex datasets (Khan & Yairi, 2018; Qi et al., 2017). 

Together, these ensemble methods have advanced credit 

scoring by offering accurate, interpretable, and 

adaptable solutions across various credit environments. 

2.3 Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) 

Support Vector Machines (SVM) are another popular 

choice in credit scoring, known for their effectiveness in 

binary classification tasks such as distinguishing 

between good and bad credit risks (Ronao & Cho, 

2016). SVM models excel in structured data 

environments where feature spaces are clearly defined, 

allowing for optimal separation of classes through 

hyperplanes, and have shown reliable performance even 

with limited data (Qi et al., 2017). K-Nearest Neighbors 

(KNN), though less common, has also been applied in 

credit scoring, especially in cases where dataset size is 

small, and simplicity is prioritized over computational 

complexity (Rawat & Wang, 2017). Research suggests 

that while SVM is generally more accurate in high-

dimensional data, KNN provides a straightforward 

approach when data is sparse, as it classifies instances 

based on proximity to neighboring data points, making 

it useful in specific, structured credit environments 

(Alom et al., 2018; Chen & Jahanshahi, 2018). Overall, 

SVM and KNN offer practical solutions in structured 

datasets, particularly where interpretability and 

computational simplicity are essential. The primary 

objective of SVM is to find the optimal hyperplane that 

maximally separates the data points of two classes. 

Given a set of training data points (𝑥𝑖 , 𝑦𝑖) where 𝑥𝑖 ∈

𝑅𝑛  and 𝑦𝑖 ∈ {−1,1}, the SVM seeks a hyperplane 

defined by the equation: 

𝑤 ⋅ 𝑥 +  𝑏 =  0 

where www is the weight vector perpendicular to the 

hyperplane, and b is the bias term. The optimal 

hyperplane is the one that maximizes the margin M, 

defined as the distance between the hyperplane and the 

nearest data points from either class, known as support 

vectors. This margin M is expressed as: 
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𝑀 =
2

|𝑤|
 

K-Nearest Neighbors (KNN), though less commonly 

applied, also holds utility in credit scoring, especially in 

smaller datasets where simplicity and computational 

efficiency are priorities (Hand, Mannila, & Smyth, 

2001). Unlike SVM, KNN does not involve model 

training but classifies a new instance x by examining its 

k nearest neighbors in the feature space. The class 

assignment for x depends on the majority class among 

its neighbors, typically using Euclidean distance as the 

measure: 

𝑑(𝑥, 𝑥𝑖) = √∑(𝑥𝑗 − 𝑥𝑖𝑗)
2

𝑛

𝑗=1

 

where 𝑑(𝑥, 𝑥𝑖) represents the distance between the 

instance x and each neighboring point xi. For cases 

where data is sparse or structured, KNN’s 

straightforward approach provides practical utility by 

leveraging neighborhood proximity, simplifying credit 

risk evaluation (Gu et al., 2018; Khan & Yairi, 2018).  

2.4 Neural Networks and Artificial Neural 

Networks (ANN) 

Artificial Neural Networks (ANN) have gained traction 

in credit scoring for their ability to capture non-linear 

relationships, providing insights into complex borrower 

behaviors (Bose et al., 2021). ANN models are adept at 

identifying patterns within multidimensional data, as 

they simulate the human brain’s processing approach, 

making them well-suited for datasets with intricate 

structures (Yap et al., 2011). In credit scoring, ANNs 

have demonstrated higher predictive power compared to 

traditional models by analyzing a broad set of borrower 

attributes beyond basic financial metrics, including 

behavioral and transactional data (Guo et al., 2020). 

However, while ANNs provide greater predictive 

accuracy, they are often criticized for their “black box” 

nature, where interpretability is limited due to complex, 

multi-layered architecture (Bose et al., 2021). To 

address this, researchers have combined ANNs with 

other models to balance interpretability and predictive 

power, achieving nuanced insights into borrower risk 

(Xuan et al., 2021). This makes ANNs a powerful but 

often complex choice for credit scoring, especially 

where comprehensive borrower data is available. 

Figure 4: Artificial Neural Network 
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When comparing these machine learning models, 

studies indicate that ensemble methods like random 

forests and gradient boosting generally outperform 

SVM and KNN in terms of accuracy, particularly in 

diverse datasets where relationships between features 

are non-linear (Ronao & Cho, 2016; Xuan et al., 2021). 

However, SVM and KNN remain relevant due to their 

simplicity and effectiveness in specific contexts, 

especially where computational efficiency and 

interpretability are prioritized (Shelhamer et al., 2016). 

While ANNs offer superior predictive accuracy, they 

pose challenges related to interpretability, making them 

less suited for regulatory environments demanding 

transparency (Qi et al., 2017). This variation in 

performance and applicability highlights the need for 

model selection based on specific credit scoring 

objectives and constraints, underscoring the importance 

of understanding each model’s strengths and limitations 

(Jeong et al., 2016). Ultimately, the choice of model 

depends on balancing accuracy, interpretability, and 

computational feasibility to optimize credit scoring 

practices effectively. 

2.5 Deep Learning Applications in Credit Scoring 

Convolutional Neural Networks (CNNs) have gained 

popularity in credit scoring for their ability to handle 

unstructured data, such as transaction histories, social 

media posts, and other alternative sources of behavioral 

data. CNNs are particularly effective in extracting 

hierarchical features, making them suitable for 

processing high-dimensional data inputs (Alom et al., 

2017). For instance, when applied to transaction 

histories, CNNs can capture nuanced spending patterns 

that traditional models might overlook, providing a 

deeper insight into borrower behaviors (Ji et al., 2013). 

Studies have shown that CNNs can even process text-

based data from social media, identifying behavioral 

indicators linked to credit risk, which enhances 

predictive accuracy for applicants without extensive 

credit histories (Qi et al., 2017). In these contexts, CNNs 

improve credit scoring by leveraging non-traditional 

data sources, addressing gaps for individuals with 

limited financial records (Rawat & Wang, 2017). 

Overall, CNNs have enabled a more inclusive approach 

in credit risk assessment, accommodating applicants 

with unconventional data profiles. Recurrent Neural 

Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) networks, are widely used in credit 

scoring to analyze time-series data, such as changes in 

borrower behavior over time (Chen & Jahanshahi, 

2018). Unlike traditional models, LSTMs retain 

information over long sequences, making them ideal for 

tracking patterns in credit card usage or repayment 

histories that indicate changes in creditworthiness (Khan 

& Yairi, 2018). Studies demonstrate that LSTMs 

outperform standard RNNs by effectively mitigating the 

vanishing gradient problem, enabling accurate 

predictions even with complex, extended temporal data 

(Guo et al., 2020). For example, LSTMs have been 

applied in analyzing monthly payment histories to 

identify subtle behavioral shifts that may signal future 

default risk (Ronao & Cho, 2016). Moreover, LSTMs’ 

ability to process sequential data makes them invaluable 

in credit scoring applications that rely on continuous 

borrower monitoring, allowing for dynamic adjustments 

in risk assessment (Khan & Yairi, 2018). These 

Figure 5:Convolutional Neural Networks (CNNs) 

 

 

Source:  Tabian et al. (2019) 
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capabilities underscore the importance of RNNs and 

LSTMs in enhancing credit scoring with real-time, 

longitudinal insights. 

 

2.6 Autoencoders and Generative Models for 

Anomaly Detection 

Autoencoders and generative models, such as 

Variational Autoencoders (VAEs) and Generative 

Adversarial Networks (GANs), have been effectively 

utilized for anomaly detection in credit scoring, 

identifying patterns indicative of unusual or risky 

borrower behaviors (Zhao et al., 2019). Autoencoders 

are designed to compress and reconstruct data, allowing 

them to detect anomalies by flagging instances that 

deviate significantly from typical borrower behavior 

(Guo et al., 2020). In credit scoring, autoencoders can 

reveal atypical spending patterns or irregular transaction 

histories that suggest heightened risk (Bose et al., 2021). 

Similarly, GANs have been employed to generate 

synthetic examples of risky behavior, providing training 

data that improves the model’s ability to recognize 

anomalies in real borrower data (Miller & Kim, 2021). 

These techniques are particularly valuable for 

identifying fraud and emerging risks that may not be 

evident in historical data, enabling proactive credit risk 

management (Hubel & Wiesel, 1968; Ji et al., 2013). 

Overall, autoencoders and generative models contribute 

significantly to enhancing anomaly detection, making 

credit scoring systems more resilient to emerging 

threats. Comparative studies of deep learning models 

reveal that each type—CNNs, RNNs/LSTMs, and 

autoencoders—has distinct strengths that address 

unique aspects of credit scoring. CNNs excel in 

extracting complex features from unstructured data, 

broadening credit risk assessment to include social 

media and transaction histories (Qi et al., 2017). In 

contrast, RNNs and LSTMs are tailored for time-series 

data, enabling continuous monitoring and assessment of 

borrower behavior (Alom et al., 2018). Autoencoders 

and GANs, on the other hand, are uniquely effective in 

anomaly detection, providing advanced fraud detection 

and risk prediction capabilities (Gu et al., 2018). 

Together, these models create a comprehensive toolkit 

for deep learning applications in credit scoring, where 

their combined use can potentially mitigate risks, 

increase accuracy, and address diverse data formats 

(Kim et al., 2023; Pietukhov et al., 2023). This 

versatility highlights the utility of deploying multiple 

deep learning models within a single credit scoring 

system, leveraging their complementary strengths for 

more robust credit assessment. 

2.7 Hybrid AI Models and Ensemble Techniques 

Hybrid models that combine logistic regression and 

neural networks have emerged as effective solutions in 

credit scoring, enhancing both interpretability and 

predictive power. Logistic regression, known for its 

simplicity and transparency, has been integrated with 

neural networks to balance the “black-box” nature of 

neural models with clear, interpretable outputs (Fu, 

Sharif Khodaei, et al., 2019). This combination allows 

neural networks to handle complex, non-linear 

relationships in the data while logistic regression 

provides easily interpretable coefficients that help 

stakeholders understand key risk factors (Fuster et al., 

2019). Studies show that this hybrid approach performs 

well in structured datasets, such as traditional credit 

histories, where logistic regression highlights 

significant predictors, and neural networks capture 

intricate borrower patterns (Ashrafuzzaman, 2024; 

Begum et al., 2024; Rozony et al., 2024; Zhao et al., 

2019). By maintaining model transparency, these 

hybrids can meet regulatory requirements for 

interpretability, making them suitable for financial 

institutions focused on transparent credit risk 

assessment (Lu & Ma, 2020). Stacking and blending 

techniques are popular ensemble methods that enhance 

credit scoring by combining outputs from multiple 

models, such as decision trees, neural networks, and 

logistic regression, into a single, unified prediction (Fu, 

Sharif Khodaei, et al., 2019). Stacking involves training 

a “meta-model” to learn from the predictions of base 

models, thus aggregating their strengths to improve 

overall accuracy (Fuster et al., 2019; Morshed et al., 

2024; Shahjalal et al., 2024; Yahia et al., 2024). 

Blending, a variation of stacking, combines models 

based on their weighted contributions to predictive 

performance, making it adaptable to diverse credit 

scoring environments (Feizabadi, 2020). Studies 

suggest that these ensemble techniques outperform 

individual models by reducing variance and bias, 

creating more robust predictions across different 

borrower segments and credit datasets (Guo et al., 2020; 

Jabeur et al., 2021). Particularly effective in complex 

credit environments, stacking and blending provide high 

accuracy, and their aggregated outputs help capture 

nuanced borrower behaviors, making them ideal for risk 
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assessment in heterogeneous credit markets (Zhao et al., 

2019). 

Reinforcement learning (RL) has found its application 

in adaptive credit scoring, particularly in dynamic credit 

environments where borrower behaviors change over 

time (Sutton & Barto, 2018). RL models operate on a 

reward-based system, learning optimal actions (credit 

decisions) through iterative feedback on borrower 

responses and repayment behaviors (Seno & Aliabadi, 

2019). This adaptability is particularly advantageous in 

markets where economic conditions fluctuate, and 

traditional static models may fail to capture real-time 

changes in borrower creditworthiness (Zhao et al., 

2019). Studies have demonstrated that RL models can 

dynamically adjust credit limits and interest rates based 

on evolving borrower profiles, optimizing for 

profitability while minimizing risk (Lu & Ma, 2020). By 

continuously updating their policies, RL models provide 

a proactive approach to credit risk assessment, enabling 

lenders to respond effectively to market shifts and 

borrower behavioral trends (Pietukhov et al., 2023). 

Moreover, Hybrid AI models and ensemble techniques, 

including logistic regression-neural network 

combinations, stacking, blending, and reinforcement 

learning, offer unique strengths tailored to diverse credit 

environments. While logistic regression-neural network 

hybrids excel in structured data settings by enhancing 

interpretability, stacking and blending techniques 

provide high accuracy across varied borrower segments 

due to their ability to aggregate multiple model insights 

(Bose et al., 2021; Guo et al., 2020). Reinforcement 

learning, on the other hand, is ideal for dynamic credit 

environments, offering real-time adjustments to shifting 

borrower behaviors (Tunç, 2012; Xuan et al., 2021). 

Together, these hybrid and ensemble models allow 

credit scoring systems to balance transparency, 

predictive power, and adaptability, supporting 

informed, real-time decisions in complex financial 

landscapes (Bose et al., 2021; Guo et al., 2020). This 

adaptability makes hybrid and ensemble approaches 

essential tools in modern credit risk management, 

addressing the need for precision and responsiveness 

across various credit markets.

2.8 Comparative Analysis of Model Performance 

and Accuracy 

In credit scoring, model performance is commonly 

evaluated using metrics such as ROC-AUC (Receiver 

Operating Characteristic – Area Under Curve), F1-

score, and precision-recall, each providing distinct 

insights into the accuracy and reliability of predictive 

models (Tunç, 2012; Xuan et al., 2021). The ROC-AUC 

score, for instance, measures a model's ability to 

distinguish between positive (risky) and negative (safe) 

cases across various threshold levels, making it 

particularly useful for imbalanced datasets where the 

majority class may dominate (Zhu et al., 2016). F1-

score, which balances precision and recall, is critical in 

evaluating credit scoring models as it emphasizes both 

the accurate prediction of risky borrowers and the 

minimization of false positives (Kim et al., 2023). 

Figure 6:Convolutional Neural Networks (CNNs) 

 

 

Source: Pietukhov et al. (2023) 
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Precision-recall metrics, especially suited to skewed 

data distributions, further provide a nuanced view of 

model effectiveness by focusing on the relevance of 

positive predictions to actual positive instances (Lu & 

Ma, 2020; Xuan et al., 2021). These metrics together 

offer a comprehensive understanding of model 

reliability, supporting the selection of AI techniques that 

can maximize accuracy in various credit scoring 

contexts (Guo et al., 2020; Zhu et al., 2016). In addition, 

Model robustness—its ability to maintain performance 

across different data conditions—is essential for credit 

scoring, particularly in data-sparse and data-rich 

environments. Data-sparse environments, such as those 

found in emerging markets, require models that can 

generalize well with limited borrower information, 

while data-rich settings, common in established 

markets, enable models to leverage vast historical data 

for enhanced predictive accuracy (Lu & Ma, 2020). 

Studies show that ensemble methods like random forests 

and gradient boosting maintain high reliability in data-

sparse conditions by mitigating overfitting through 

aggregation, allowing them to perform well despite 

limited data (Guo et al., 2020). In data-rich 

environments, deep learning models like CNNs and 

LSTMs exhibit robust performance by capturing 

complex, multi-dimensional patterns in borrower 

behaviors, thus improving predictive accuracy (Tunç, 

2012). This adaptability across varied data conditions 

demonstrates the versatility of AI models, underscoring 

the need for robustness in models tailored for different 

credit environments (Zhu et al., 2016). 

The adaptability of credit scoring models to diverse 

borrower segments is crucial, as creditworthiness 

indicators vary significantly across demographics, 

industries, and economic backgrounds. Machine 

learning models like support vector machines (SVM) 

and K-nearest neighbors (KNN) are effective for well-

defined borrower segments due to their classification-

based approaches, which perform optimally when 

feature spaces are homogeneous (Alqadhi et al., 2022; 

Zhu et al., 2016). However, more complex borrower 

profiles, such as those found in heterogeneous markets, 

often require models with higher flexibility, such as 

neural networks and hybrid models that combine 

logistic regression with neural networks for enhanced 

interpretability and adaptability (Tunç, 2012; Wang et 

al., 2021). Studies have found that hybrid models and 

ensemble techniques, which aggregate multiple model 

outputs, provide superior adaptability by tailoring 

predictions to varying borrower behaviors (Guo et al., 

2020; Moradzadeh et al., 2022). This adaptability is 

critical in supporting credit risk decisions in diverse 

borrower demographics, where distinct socio-economic 

factors influence credit behaviors (Bose et al., 2021; 

Figure 7: Comparative Analysis of Credit Scoring Models 
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Pietukhov et al., 2023). Moreover, comparing AI-driven 

credit scoring models reveals that each has distinct 

advantages in terms of accuracy, robustness, and 

adaptability to borrower segments, making model 

choice dependent on specific credit environment needs. 

Ensemble models like random forests and gradient 

boosting provide high accuracy and robustness in data-

sparse conditions, ideal for emerging markets with 

limited historical credit data (Alqadhi et al., 2022; Zhu 

et al., 2016). In data-rich environments, deep learning 

models like CNNs and LSTMs excel due to their 

capacity to process unstructured and complex data, 

capturing nuanced patterns in borrower behavior 

(Zhang, 2003). Hybrid models, combining logistic 

regression with neural networks, enhance 

interpretability and adaptability, proving valuable in 

diverse demographic and market conditions where 

transparency and scalability are essential (Tunç, 2012). 

This comparative analysis highlights the need for 

selecting models based on the balance between 

accuracy, robustness, and adaptability to meet the 

demands of varying credit environments effectively. 

2.9 Gaps in the Literature  

Although alternative data sources, such as social media, 

transaction histories, and behavioral data, have been 

identified as valuable for enhancing credit scoring 

models, few studies have fully explored their integration 

and impact on model accuracy (Bose et al., 2021). 

Alternative data provides insights into borrower 

behavior that traditional financial data might miss, 

especially for individuals with limited credit histories 

(Alqadhi et al., 2022). However, challenges in data 

accessibility, privacy concerns, and varying data quality 

across sources restrict the potential for effective use in 

credit scoring (Fuster et al., 2019). Recent studies have 

demonstrated the potential of these sources in increasing 

model inclusivity, but more research is needed to 

understand the full impact on predictive reliability and 

regulatory compliance in diverse credit environments 

(Seno & Aliabadi, 2019). 

AI-driven credit scoring models, particularly deep 

learning algorithms, often lack transparency due to their 

complex architectures, leading to challenges in 

interpretability (Tang, 2019). Models like convolutional 

neural networks (CNNs) and recurrent neural networks 

(RNNs) perform well in prediction tasks but are 

frequently described as “black boxes,” limiting their 

application in regulated industries that require high 

levels of accountability (Fu, Sharif-Khodaei, et al., 

2019; Zhao et al., 2019). Although hybrid models 

combining interpretable methods (e.g., logistic 

regression) with neural networks have been proposed as 

a solution, there is limited empirical evidence 

supporting their efficacy in meeting regulatory demands 

(Berg, Puri, et al., 2019; Fuster et al., 2019). Addressing 

this gap requires developing frameworks for explainable 

AI (XAI) in credit scoring, ensuring models can be both 

accurate and interpretable (Berg, Burg, et al., 2019). 

Another significant gap lies in the ethical implications 

and bias issues within AI-driven credit scoring models. 

Researchers have noted that AI models can 

inadvertently perpetuate biases due to skewed training 

data or biased algorithmic processes, which may 

unfairly disadvantage certain demographic groups 

(Fuster et al., 2019). Although various studies have 

highlighted the need for fair, accountable, and 

transparent (FAT) models, limited research has 

effectively mitigated these biases in real-world credit 

scoring applications (Guo et al., 2020). With few 

standardized frameworks for ethical AI implementation, 

credit scoring models may continue to reinforce existing 

inequalities, underscoring the need for extensive studies 

focused on bias detection and correction in AI 

algorithms (Bose et al., 2021; Seno & Aliabadi, 2019). 

While many credit scoring studies focus on predictive 

accuracy, few examine model resilience across varying 

economic conditions, a critical factor for maintaining 

accuracy during financial crises or market fluctuations 

(Lu & Ma, 2020). Models trained under stable economic 

conditions may not generalize well during downturns, 

leading to inaccurate risk predictions when economic 

environments shift (Bose et al., 2021). Reinforcement 

learning and adaptive models have shown promise in 

handling such variability, but studies rarely explore their 

long-term reliability under volatile conditions 

(Feizabadi, 2020). Addressing this gap requires 

investigating model adaptability and performance 

across economic cycles, ensuring credit scoring systems 

can withstand economic instability while maintaining 

predictive accuracy (Tabian et al., 2019). 
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3 Method 

This study followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure a structured, transparent, and 

rigorous review process. The following sections outline 

the approach taken for selecting and analyzing relevant 

literature, detailing each step involved. 

3.1 Eligibility Criteria 

The eligibility criteria were defined to ensure that only 

relevant studies were included in the review. Articles 

eligible for inclusion needed to focus on the application 

of AI in credit scoring, present empirical findings, and 

be published in peer-reviewed journals between 2010 

and 2024. Studies that were primarily theoretical, did 

not involve empirical data, or focused on unrelated 

fields (e.g., non-financial applications of AI) were 

excluded. This step ensured the review targeted studies 

that contributed directly to understanding AI 

advancements in credit risk analysis. 

3.2 Information Sources 

The study utilized a comprehensive selection of 

academic databases to gather relevant literature. 

Databases including IEEE Xplore, Scopus, PubMed, 

Google Scholar, and Web of Science were searched to 

ensure broad coverage of AI and financial research. 

These databases were chosen for their extensive  

 

 

collections of peer-reviewed publications in computer 

science, engineering, finance, and interdisciplinary 

studies. The search was conducted from June to 

September 2024 to capture recent advancements in AI 

applications to credit scoring. 

3.3 Search Strategy 

To ensure inclusivity in relevant studies, a systematic 

search strategy was developed. Key terms included “AI 

in credit scoring,” “machine learning in finance,” 

“deep learning and credit risk,” and “ensemble 

techniques in credit scoring.” Boolean operators (AND, 

OR) were used to combine these keywords, enhancing 

precision in search results. For example, a typical search 

query used was (“AI” OR “machine learning” OR 

“deep learning”) AND (“credit scoring” OR “credit 

risk” OR “financial risk”). This approach allowed the 

identification of studies that examined various AI 

techniques applied within the credit scoring domain. 

3.4 Study Selection 

The initial search yielded a total of 527 articles, which 

were systematically screened for relevance. The 

selection process involved multiple steps: (1) 

Screening: Titles and abstracts of all 527 articles were 

reviewed to eliminate duplicates and unrelated studies, 

resulting in a shortlist of 200 articles. (2) Full-text 

Review: The full texts of the remaining 200 articles 

Gap in Literature Description Challenges 

Alternative Data Sources Few studies have fully explored the 

integration of alternative data (e.g., social 

media, transaction histories) and its impact 

on model accuracy. 

Data accessibility, privacy 

concerns, and varying data 

quality across sources 

Model Interpretability Deep learning models (e.g., CNNs, RNNs) 

lack transparency due to complex 

architectures, making them difficult to 

interpret, especially for regulated industries 

requiring accountability. 

Models are often “black boxes”; 

limited empirical evidence on 

hybrid models 

Ethical Implications and 

Bias 

AI models can perpetuate biases from 

skewed training data or algorithmic 

processes, potentially disadvantaging certain 

demographic groups. 

Lack of standardized frameworks 

for ethical AI; limited success in 

mitigating real-world biases 

Economic Condition 

Resilience 

Many models do not generalize well during 

economic downturns, resulting in inaccurate 

risk predictions under changing market 

conditions. 

Insufficient testing across 

economic cycles; adaptability in 

volatile markets 

Table 1: Summary of the Literature Gap 
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were assessed for eligibility based on the defined 

criteria, leading to the exclusion of 130 articles that did 

not meet inclusion standards. (3) Inclusion in Final 

Analysis: After thorough screening, 70 articles were 

deemed eligible for in-depth analysis. The PRISMA 

flowchart in Figure X provides a visual summary of the 

selection process, illustrating each step from initial 

identification to final inclusion. 

3.5 Data Extraction 

Data extraction involved systematically collecting 

pertinent information from the selected studies to 

facilitate comparative analysis. Key details extracted 

included author names, publication year, study design, 

AI models used (e.g., neural networks, ensemble 

models), performance metrics (e.g., ROC-AUC, F1-

score), and main findings. This information was 

organized in a structured spreadsheet, enabling detailed 

comparison across studies and providing a foundation 

for synthesizing insights on model performance, 

interpretability, and adaptability within credit scoring. 

3.6 Final Selection 

The quality of each study was assessed using the Mixed 

Methods Appraisal Tool (MMAT), which focuses on 

evaluating the relevance, validity, and rigor of studies. 

The MMAT provided a structured approach to assess 

study quality, with articles rated as high, medium, or low 

quality. Only those studies rated as high or medium were 

included in the final analysis, resulting in 60 studies. 

The 10 articles rated as low quality were excluded from 

synthesis, ensuring that the review was based on 

rigorous, reliable findings.

 

4 Discussion 

The findings of this review underscore the increasing 

efficacy of AI-driven models in credit scoring, 

particularly in comparison to traditional statistical 

approaches. Earlier studies on credit scoring primarily 

focused on statistical methods like logistic regression 

and discriminant analysis, which, while effective, were 

limited in handling complex borrower behaviors and 

non-linear relationships (Jagtiani & Lemieux, 2019). 

The emergence of machine learning, particularly 

ensemble models like random forests and gradient 

boosting, marks a significant shift. As identified in this 

review, ensemble models enhance accuracy by 

combining multiple learners, a feature that addresses the 

limitations of linear models by capturing complex, non-

linear data relationships. This aligns with the findings of 

Zhao et al., (2019) and Lu and Ma (2020), who 

highlighted the strength of ensemble techniques in 

improving predictive accuracy in finance. The ability of 

ensemble models to perform well across diverse 

Figure 8: PRISMA Method Adopted for this Study 
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borrower segments and financial histories not only 

supports their applicability in today’s heterogeneous 

markets but also reinforces their robustness over 

traditional statistical methods. 

Deep learning models, such as CNNs and RNNs, have 

expanded the scope of credit scoring by enabling the 

analysis of large volumes of unstructured data, a need 

that traditional models have historically struggled to 

meet (Bose et al., 2021). While prior studies largely 

focused on structured financial data, the current review 

highlights how deep learning facilitates the use of 

alternative data sources—such as transaction histories 

and social media data—adding new dimensions to credit 

risk analysis. Earlier research, such as that by Wang et 

al. (2021), only partially addressed unstructured data, as 

data processing capabilities were more limited. 

However, recent studies indicate that CNNs excel in 

identifying patterns from high-dimensional data, while 

RNNs, particularly LSTMs, provide time-sensitive 

insights by processing time-series data for ongoing risk 

assessment (Lu & Ma, 2020; Wang et al., 2021). These 

findings suggest that deep learning models have the 

potential to support more inclusive credit systems by 

enabling assessments for borrowers who may lack 

extensive credit histories, a notion supported by Tabian 

et al. (2019). 

The hybridization of traditional and neural network 

models has introduced a valuable balance between 

interpretability and accuracy, addressing the regulatory 

requirements for transparency in financial decision-

making. Earlier studies, such as those by Zhao et al. 

(2019), emphasized the importance of transparency in 

credit scoring models but faced challenges in achieving 

both accuracy and interpretability. The reviewed studies 

demonstrate that hybrid models combining logistic 

regression with neural networks offer a solution, 

maintaining interpretability while effectively capturing 

complex data patterns (Jagtiani & Lemieux, 2019). This 

approach is consistent with findings from (Fu, Sharif 

Khodaei, et al., 2019), who noted that hybrid models are 

particularly suitable for financial environments that 

require both predictive power and regulatory 

compliance. By enabling stakeholders to understand the 

factors driving credit decisions, these models bridge a 

critical gap in credit scoring that earlier studies struggled 

to address. 

Ensemble techniques such as stacking and blending 

emerged as particularly robust solutions for enhancing 

prediction accuracy by combining outputs from various 

models. This approach builds on earlier studies’ 

exploration of ensemble models but takes adaptability 

further by integrating a meta-model to refine predictions 

across diverse borrower demographics. This review’s 

Figure 9: Model Type: Article Vs. Citation 
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findings, which align with those of Tabian et al. (2019) 

and Seno  and Aliabadi (2019), demonstrate that 

stacking and blending enable credit scoring systems to 

aggregate insights from multiple models, producing 

more reliable predictions for complex credit 

environments. Additionally, by incorporating models 

based on weighted contributions, blending supports 

adaptability in highly heterogeneous borrower markets, 

which was previously less feasible in traditional single-

model approaches. This finding is particularly relevant 

in today’s financial sector, where diverse borrower 

profiles require models that adapt to varying credit 

histories and behaviors. Finally, this review highlights 

the persistent challenges of fairness, transparency, and 

ethical concerns in AI-driven credit scoring, building on 

earlier studies’ discussions of bias in statistical models. 

Tabian et al. (2019) and Lu and Ma (2020) previously 

noted that AI models risk perpetuating societal biases 

present in training data, a problem that is even more 

pronounced with the incorporation of alternative data 

sources. The review emphasizes the importance of 

integrating fairness constraints and debiasing 

techniques, which align with calls from (Bose et al., 

2021) for more ethical AI model development. While 

traditional credit scoring methods also faced bias-related 

issues, the complexities of AI models amplify these 

concerns, especially when handling sensitive or socio-

economically biased data. This discussion highlights 

that ethical and fairness considerations must evolve 

alongside advancements in AI, ensuring that as AI-

driven credit scoring models become more 

sophisticated, they also remain equitable and inclusive 

for all borrowers. 

5 Conclusion 

This systematic review underscores the transformative 

potential of AI-driven models in advancing the field of 

credit scoring, showcasing their superiority in predictive 

accuracy, adaptability, and inclusivity compared to 

traditional statistical approaches. Machine learning 

models, especially ensemble techniques, have 

demonstrated strong performance across varied 

borrower demographics and credit environments by 

effectively handling non-linear relationships in data. 

Deep learning models, particularly CNNs and RNNs, 

expand credit risk analysis to unstructured and 

alternative data sources, addressing gaps that traditional 

models could not fill, and supporting financial inclusion 

by assessing creditworthiness even for those lacking 

extensive credit histories. Hybrid models that combine 

logistic regression with neural networks offer a critical 

balance between interpretability and predictive power, 

addressing the regulatory need for transparency while 

enhancing credit risk prediction accuracy. Additionally, 

ensemble techniques like stacking and blending allow 

for more robust and adaptable credit scoring by 

combining multiple model outputs, ensuring accuracy 

and relevance across different borrower profiles. 

However, this review also reveals persistent challenges, 

particularly regarding the transparency and ethical 

implications of AI-driven credit scoring models. While 

AI has significantly advanced predictive capabilities, 

the “black box” nature of many deep learning models 

raises concerns over explainability and accountability, 

essential for regulatory compliance and user trust. 

Furthermore, the risk of perpetuating biases in AI 

models remains a pressing concern, particularly as 

models incorporate alternative data sources that may 

reflect societal biases. Future research should focus on 

developing explainable AI frameworks and fairness-

aware models to ensure that AI-driven credit scoring 

solutions are not only accurate but also transparent and 

equitable. As AI continues to reshape credit scoring, 

these considerations will be essential for fostering an 

inclusive, ethical, and robust financial system that can 

adapt to the diverse needs of a dynamic global 

population. 
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